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Abstract

The northern Great Plains (NGP) of the United States has been a hotspot of West Nile virus (WNV) incidence since 2002.
Mosquito ecology and the transmission of vector-borne disease are influenced by multiple environmental factors, and
climatic variability is an important driver of inter-annual variation in WNV transmission risk. This study applied multiple
environmental predictors including land surface temperature (LST), the normalized difference vegetation index (NDVI) and
actual evapotranspiration (ETa) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) products to
establish prediction models for WNV risk in the NGP. These environmental metrics are sensitive to seasonal and inter-annual
fluctuations in temperature and precipitation, and are hypothesized to influence mosquito population dynamics and WNV
transmission. Non-linear generalized additive models (GAMs) were used to evaluate the influences of deviations of
cumulative LST, NDVI, and ETa on inter-annual variations of WNV incidence from 2004–2010. The models were sensitive to
the timing of spring green up (measured with NDVI), temperature variability in early spring and summer (measured with
LST), and moisture availability from late spring through early summer (measured with ETa), highlighting seasonal changes in
the influences of climatic fluctuations on WNV transmission. Predictions based on these variables indicated a low WNV risk
across the NGP in 2011, which is concordant with the low case reports in this year. Environmental monitoring using remote-
sensed data can contribute to surveillance of WNV risk and prediction of future WNV outbreaks in space and time.
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Introduction

West Nile virus (WNV) first appeared in the northeastern

United States in 1999, and spread westward and southward after

2002 [1]. Subsequently, WNV has been reported in every state in

the conterminous U.S. and become one of the most important

vector-borne diseases due to its high human morbidity and

impacts on avian populations [2,3]. In the northern Great Plains

(NGP), WNV caused a significant outbreak in 2003, and since that

time the region has remained a major hotspot for human disease

[4,5]. Although relative spatial patterns of WNV risk in the NGP

have remained relatively stable over time, there has been

considerable interannual variability in human WNV incidence,

with disease outbreaks often occurring in different locations in

different years [6]. Climatic variability is known to have strong

influences on the dynamics of virus circulation, vector abundance,

and avian communities, and thus may explain historical fluctua-

tions of WNV risk in the NGP [7–9]. Understanding the climatic

determinants of WNV disease can also provide a basis for

forecasting future disease risk based on lagged responses to

antecedent environmental conditions.

Many studies have addressed the associations of WNV

incidence with static environmental variables, including human

demographics, physiography, land cover characteristics, land use

practices, and the built environment [10–12]. In the NGP, high

temperatures from May through July, intermediate precipitation

from May through July, rural populations, and irrigated croplands

were associated with high WNV incidence during the 2003

epidemic [6]. At a landscape scale, spatial patterns of human

WNV cases in South Dakota were found to be associated with low

elevations, rural areas, and poor soil drainage [13]. These

associations are hypothesized to reflect the habitat preferences of

the key mosquito vector, Culex tarsalis [9,14,15], although

geographic variability in avian host communities is likely

important as well.

In contrast, temporal variability of WNV incidence is likely to

be affected by inter-annual climatic fluctuations. These climatic

influences on WNV transmission risk have been studied in several

regions of the United States. Higher temperatures were found to

be associated with the epicenters of WNV activity between 2002 to

2004 in the U.S. [16]. In Mississippi, county-level WNV human

risk was negatively associated with rainfall in the previous year

[17]. Hydrological conditions were associated with the incidence
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of human WNV cases through their influences on vector

abundance in Colorado [18]. Mosquito infection rates exhibited

lagged responses to both temperature and precipitation in the

Chicago region [19]. Although these studies have demonstrated

the WNV incidence can be affected by climatic variability, most

research to date has focused on small geographic areas or

considered relatively short time periods.

The ecology of vector populations is a critical pathway through

which environmental variability influences virus transmission and

ultimately disease risk to humans. In temperate areas, the

transmission of WNV requires virus amplification in avian hosts

during the early spring and then spills over to dead-end hosts, like

humans or horses, during the summer. In the NGP, mosquito

abundance is highly synchronized with seasonal climatic fluctua-

tions and can influence both amplification and transmission to

humans [9]. The composition of bird communities also varies

interannually in response to climate anomalies [20] and thus

provides another pathway through which environmental variabil-

ity can influence WNV risk. Temperature fluctuations also directly

affect rates of virus amplification by influencing the extrinsic

incubation period of WNV in the mosquito vector [16]. Thus,

there are multiple mechanisms through which climate and other

time-varying environmental drivers may influence interannual

variability of WNV incidence in the NGP.

Environmental monitoring data obtained through satellite

remote sensing has been widely used to assess the risk of vector-

borne diseases over the past decade [21,22]. Remotely-sensed data

provide nearly seamless coverage across large spatial extents,

affording new opportunities for investigating the environmental

determinants of disease risk across regions like the NGP. Various

environmental parameters relevant to mosquito-borne disease

ecology can be derived from satellite imagery. For example, the

Moderate-Resolution Imaging Spectroradiometer (MODIS) nor-

malized difference vegetation index (NDVI) and land surface

temperature (LST) products were used along with precipitation

estimates from the Tropical Rainfall Monitoring Mission (TRMM)

to predict spatial and temporal variability in malaria cases in

Afghanistan [23]. Vegetation indices have also been used to

identify habitats for WNV-competent vectors in urban areas and

link them to potential transmission risk [24]. To date, however,

remotely-sensed environmental indicators have not been used to

model and predict inter-annual variability in WNV risk across

large geographic areas.

To help remedy this knowledge gap, this study used multiple

environmental variables derived from satellite remote sensing data

to model county-level incidence of human WNV disease in the

NGP over seven years (2004–2010). Our overarching hypothesis

was that measurements of accumulated temperature and moisture

throughout the growing season would serve as indicators of the

environmental potential for WNV amplification in birds and

transmission to humans, and would therefore be correlated with

inter-annual fluctuations in the number of human WNV cases. We

further hypothesized that the fit of models would improve as more

data from later in the growing season were included, and that

sensitivity to different environmental variables would change

throughout the season. We also explored the potential for using

these models to forecast WNV risk in late summer based on

environmental conditions in spring and early summer.

Materials and Methods

Study Areas and WNV Human Cases
This study included seven States in the north-central U.S: Iowa

(IA), Minnesota (MN), Montana (MT), Nebraska (NE), North

Dakota (ND), South Dakota (SD), and Wyoming (WY). These

states encompass the entire northern Great Plains (NGP) and its

surrounding ecoregions. The NGP is characterized by low-relief

landscapes dominated by prairie, grassland, and rain-fed agricul-

tural fields. The weather varies throughout the year with cold

winters, hot summers, and strong winds. The population density is

much lower than the U.S. average (21.73 vs. 88.08/per square

mile, Census 2010). Most counties in the NGP are classified as

rural or mixed rural settings [25].

WNV positive human case data from the Centers for Disease

Control and Prevention (CDC) were obtained from a website

supported by United States Geological Survey (USGS) (disease-

maps.usgs.gov). The total number of county-level WNV neuroin-

vasive cases and WNV fever cases from 2004 to 2010 was used as

the dependent variable in the study. Human WNV incidence

during the initial outbreak years in 2002 and 2003 was likely

affected by immunologically naı̈ve avian and human populations

and dispersal limitations. In order to focus on inter-annual climatic

influences, we analyzed the subsequent years during which WNV

was assumed endemic. Positive human cases met the CDC

neuroinvasive and non-neuroinvasive domestic arboviral disease

case definition and which included one or more clinical criteria

and one or more laboratory criteria. Although reporting bias of

WNV non-neuroinvasive cases is a potential concern for this type

of passive surveillance system, a strong correlation between total

reported WNV cases and neuroinvasive cases was reported in a

previous study [26]. Thus, total numbers of reported WNV cases

can capture temporal variability similar to that of neuroinvasive

cases while allowing for a larger sample size.

Environmental Predictors
We examined three environmental variables as predictors of

WNV risk: land surface temperature (LST), the normalized

difference vegetation index (NDVI) and actual evapotranspiration

(ETa), all of which were derived from the Moderate Resolution

Imaging Spectroradiometer (MODIS) remote sensing products.

LST and NDVI have been used to analyze vector-borne diseases

in many previous studies [23,27,28]. ETa is a hydrological

variable measuring the flux of water from ground to atmosphere

via evaporation and transpiration and is thus an indicator of

moisture available at near the ground surface. ETa has been found

to be associated with the abundance of Ae. vexans in New York [29]

and temporal variability in malaria cases in Ethiopia [30]. In

contrast to rainfall, ETa provides a more direct measurement of

water availability on the ground which may serve as a more

proximal indicator of mosquito breeding habitats.

MODIS data products at 1 km spatial resolution were acquired

from Land Process Distributed Active Archive Center (LP DAAC).

The mean LST was averaged from the day and night land surface

temperatures derived from the MODIS Terra land surface

temperature and emissivity product (MOD11A2). The NDVI

was calculated from the band 1 (visible) and band 2 (near infrared)

of the MODIS combined TERRA/AQUA nadir BRDF-adjusted

reflectance product (MCD43B4) using the equation below.

NDVI~
Band 2{Band 1

Band 2zBand 1

Actual evapotranspiration (ETa) was calculated based on

Famine Early Warning System Network (FEWS-NET) potential

evapotranspiration (PET) and elevation-corrected LST using the

simplified surface energy balance method [31,32]. All these indices

were aggregated and summarized at county-level using the Zonal

Climatic Anomalies and WNV Incidence in the NGP
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Summary tool in ArcGIS 9.3 (ESRI, Redlands, CA). LST and

ETa were summarized for 8-day composite periods, whereas

NDVI was summarized over a 16-day composite period that was

updated at 8-day intervals. For consistency, the last date of each

composite period was used as the composite date. For example,

the April 22 LST composite included data from April 15-April 22,

whereas the April 22 NDVI composite included data from April 7-

April 22.

In the NGP, the transmission pattern of WNV is highly seasonal,

and human cases are usually reported during summer and early fall.

In South Dakota, for example, more than 90% of human cases occur

after July 1. Laboratory evidence has shown that 14.3uC is the

threshold temperature for the activity of WNV [16], and we assumed

that there was minimal mosquito vector and virus activity during

winter in the NGP. Therefore, we only included environmental

predictors from early spring to summer in our statistical model to

predict the incidence during the summer of the same year. The start

date of the first MODIS composite was April 7 and the end date of

the last MODIS composite was August 12.

Statistical Analysis
The purpose of our analysis was to evaluate the contributions of

different seasonal environmental variables for predicting the

occurrence of WNV outbreaks in NGP. In order to minimize

the influences of unstable incidence rates from rural counties with

extremely low populations, we applied several approaches to

transform the raw WNV human incidence rate to more reliable

indicators. The spatial empirical Bayes (SEB) smoothed rate was

used to map spatial patterns of the annual WNV incidence in the

NGP throughout 2004–2010 for exploratory visualization. This

spatial smoothing technique uses empirical Bayes methods to

borrow strength from neighboring counties and minimize prob-

lems associated with small populations at risk [33,34]. The SEB

smoothed rate was calculated using GeoDa 0.95 [34].

In the statistical models, we included only the 66 counties with

ten or more cumulative WNV cases during the study period to

focus on areas with the highest potential for measuring temporal

variability in risk to humans. We calculated the logarithm of

relative risk (LRR) to replace the raw incidence rate for each

county in each year. The LRR quantified the interannual

variability of WNV incidence for each county and was calculated

using the following equation.

LRRij~ln 1z
Oij

Ei

� �

where i indexes counties, j indexes years, O = observed cases, and

E = expected cases.

Three steps were used to calculate the deviation percentage of

each environmental variable to quantify annual anomalies relative

to the long term average. First, cumulative environmental indices

(CENV) were calculated for LST, NDVI and ETa for every

composite date in every year. A threshold temperature of 14.3uC
was set to calculate the growing degree day of LST (cumulative

LST) based on the threshold temperature for virus activity [16]. A

threshold value 0.25 was set to calculate cumulative NDVI to

avoid the background noise resulting from snow cover in early

spring. No threshold value was set for cumulative ETa. Second,

the 10-year average (2002–2011) of each of the three cumulative

indices (MCENV) was estimated for each composite date in each

county.

MCENVik~

Pn
j~1 CENVijk

n

where k indexes the starting date of each composite period and

n = number of years.

Finally, the deviance percentage of each cumulative environ-

mental predicator (DCENV) was calculated as a function of the

annual indices and their 10-year averages.

DCENVijk~
CENVijk{MCENVik

� �
MCENVik

|100

Generalized additive models (GAMs) were applied to analyze

the associations between the percent deviations of environmental

predictors throughout spring to summer and annual relative risk of

WNV. The GAMs used a spline smoothing operator which allows

fitting data with nonlinear relationships [35]. We used the data

from 2004 to 2010 to fit the models and tested the forecast of

relative risk in 2011. The generated form of the GAM models was

LRRij*s DCLSTijk

� �
zs DCNDVIijk

� �
zs DCETAijk

� �

where s represents a spline smoothed function of the independent

variable.

A total of 15 sets of models were fitted, each corresponding to a

specific date ranging from April 22 to August 12 at 8-day intervals.

These model dates represented the latest composite date of the

cumulative environmental indices that could be included in each

model. For each model date, there were multiple candidate models

that included all combinations of the three climate variables

summarized for all composite dates at or earlier than the model

date. The models were evaluated using the Akaike’s Information

Criterion (AIC) and the model with the lowest AIC was selected as

the best fit for each date [36]. This approach allowed us to select a

best predictive model for each model date and determine whether

model fit improved as additional environmental information from

later in the season was incorporated. We applied a cross validation

to assess the predictive capabilities of the models by dropping one

year at a time, fitting the model with the remaining years,

predicting LRR based on the environmental variables for the year

that was withheld, and computing the root mean square error

(RMSE) to evaluate the prediction accuracy.

Statistical modeling and model validation were carried out using

R 2.13 (R Development Core Team 2011) and the mgcv package

was used for the statistical modeling. Two models (June 25 and

July 27) were selected to generate the forecasting maps of WNV

risk for 2011. These two models dates were selected to assess an

early-season prediction versus a late-season prediction. Forecasting

maps were generated in ArcGIS 9.3 (ESRI, Redlands, CA) by

applying the models to all counties within the NGP.

Results

Annual WNV incidence rates were compared between the 7-

state NGP region and the entire United States in Table 1. The

incidence rates were significantly higher in the NGP than the

nation as a whole, and nearly 20% of cases in the U.S. from 2004

to 2010 occurred in the NGP. The particularly high 2007 WNV

incidence rate in the NGP was not observed at the national level,

suggesting that environmental changes at the regional level are one

of the important drivers. The SEB smoothed incidence rates

Climatic Anomalies and WNV Incidence in the NGP
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revealed spatial variability of the annual WNV incidence rate

within the NGP (Figure 1). The counties with highest incidence

were usually located within ND, SD, and NE. The areas with

highest incidence were generally in the Glaciated Plains ecoregions

on the east side of Missouri river. In contract, the forest and

cropland-dominated areas in Minnesota and Iowa and mountain-

ous regions in Montana and Wyoming tended to have lower

incidence rates. However, the 2007 outbreak demonstrated an

unusual expansion of WNV west of the Missouri river into the

northwestern Great Plains, whereas in 2009 WNV was more

concentrated in the southern part of the region. From 2007 to

2010 WNV incidence decreased in the NGP, although moderate

to low level incidence was observed in portions of ND, SD, and

NE.

Generalized additive models for each period from April 7 to

August 12 incorporated environmental predictors prior to each

model date. The best-fitting models with the lowest AIC values for

each model date are listed in Table 2. The decreasing AIC and

increasing adjusted R-square values indicated that the prediction

power of models gradually increased as environmental data were

accumulated through spring and into summer. Cumulative LST,

ETa, and NDVI generally showed positive associations with WNV

relative risk (Figure 2). However, WNV relative risk was highest at

intermediate LST deviations in the late season models, suggesting

that WNV is associated with a climatic niche rather than

increasing monotonically with temperature.

Examining the composite dates of the cumulative environmen-

tal indices included at each model date showed how the sensitivity

of WNV to these variables changed throughout the season.

Cumulative LST through composite date May 16 and cumulative

NDVI through composite date April 22 remained in the models

through model date July 11 (Table 2). After this model date, the

cumulative LST anomalies through composite date July 19 and

later were included in the models. Between model dates May 17

and July 3, model fit increased as cumulative ETa was totaled over

longer portions of the growing season.

The latest composite date for cumulative NDVI in any of the

models was May 8, indicating that WNV risk was only sensitive to

cumulative NDVI early in the growing season. In contrast, WNV

risk was sensitive to change in cumulative LST early in the

growing season (composite dates April 22-May 16) and again later

in early to mid-summer (composite date July 19 and later).

Sensitivity to increasing cumulative ETa was greatest during the

late spring and early summer (composite dates May 24-July 11)

and weaker in mid to late summer (composite date July 11 and

later).

The results of cross-validation from 4 model dates (May 24,

June 25, July 27, and August 12) are shown in Figure 3. Overall,

the models showed better prediction for low risk years (2008–2010)

than moderate-to-high risk years (2004–2007). In 2004 and 2005,

predictions were more accurate for the later season models (July

and August), whereas in 2006 predictions were more accurate for

the early season models (May and June). Seasonal differences in

prediction accuracy were comparatively small from 2007–2010.

Two WNV risk forecasting maps in 2011 were generated by the

best fitting models for model dates June 25 and July 27 (Figure 4).

Predictions were limited to the historical zone of high risk WNV

within the NGP, which included all the counties in ND, SD, and

NE and other counties with smoothed SEB incidence rates equal

or larger than 8.5 WNV cases per 100,000 per year for 2002 to

2010. Because our analysis criteria excluded the counties with

cumulative WNV human cases less than 10 in the study period,

most of the counties included in the statistical models are within

this zone. For this reason, our forecasting results in 2011 were only

shown within this zone to avoid over-extrapolating the predictions.

Both risk maps indicated that the WNV risk in 2011 was at

relatively low across most of the NGP. This result is concordant

with the CDC WNV surveillance data [37] and the 2011 SEB

smoothed incidence rate (Figure 4). In 2011, only 50 WNV human

cases were reported from the NGP and the overall incidence rate

was 0.40 per 100,000.

Some, but not all of the areas with higher incidence in 2011 fell

within the moderate-to-high risk counties predicted by the model,

A relatively high proportion of the 2011 cases (22) occurred in

eastern NE within Omaha-Council Bluffs (population of 877,000

in 2011), the largest metropolitan area within the historical high-

risk zone (Figure 4). Of the counties in this metropolitan area, only

Sarpy County NE exhibited a distinctive increase in WNV cases (8

cases in 2011 compared to a maximum of 3 cases per year from

2004–2010). Sarpy County was identified as a low risk county in

the forecast for model date June 25, but was classified as moderate-

risk in the later-season forecast for model date July 27.

Discussion

This study applied environmental variables derived from

satellite remote sensing data to model WNV transmission risk in

the NGP. The forecast for 2011 was generally accurate at a

regional level, indicating that at least some of the interannual

variability in WNV transmission can be captured by remotely-

sensed variables such as land surface temperature, actual

evapotranspiration, and the normalized difference vegetation

index. This finding also supported our overarching hypothesis

that these environmental predictors influence a variety of

ecological processes which affect the potential for virus amplifica-

tion and ultimately transmission to humans. However, the

cumulative environmental indices may also mask short-term

environmental variability, such as heavy rains that wash out

breeding sites or cold periods that interrupt WNV transmission.

Continued model updating, prediction and evaluation will be

necessary to assess forecasting skill under changing future

conditions.

The different temporal responses of each environmental

variable also revealed how associations between interannual

variability of WNV incidence and deviations of cumulative LST,

NDVI, and ETa varied throughout the season. WNV relative risk

was sensitive to cumulative LST in early spring, as evidenced by

the fact that cumulative LST through composite date May16 was

included in most of the prediction models with model dates in

spring and early summer. Thus, early spring temperature

conditions may be particularly important for reducing the extrinsic

incubation period (EIP) and triggering virus amplification in the

avian communities. On the other hand, Culex species tend to draw

blood meals from avian species in spring and early summer and

shift to take blood meals from humans in summer and fall [38].

This shifting behavior facilitates virus transmission from the avian

community to other hosts, including humans. Bell et al. (2006)

proposed a similar idea in a study in North Dakota and Minnesota

which showed the higher temperature was associated with a longer

WNV transmission season, higher mosquito infection rates, and

higher numbers of human cases [39].

NDVI is metric of vegetation greenness with a seasonal pattern

that is mainly sensitive to temperature, but also to moisture

conditions in the NGP. In our prediction models, cumulative

NDVI through April to early May served primarily as an indicator

of the timing of the onset of spring and emerged as a predictor of

WNV relative risk. Early onset of spring indicates that the

environmental conditions are suitable for vegetation growth and

Climatic Anomalies and WNV Incidence in the NGP
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also for earlier emergence of mosquito populations. In the NGP,

the time available for virus amplification in the enzootic cycle is

critical because the extremely cold winter in this region makes the

mosquito season shorter than warmer areas. Small scale virus

circulation in mosquito and avian populations during the winter

has been shown in California but seems unlikely in the NGP [40].

Figure 1. Spatial empirical Bayes (SEB) smoothed WNV Incidence Rate in the Northern Great Plains throughout 2004 to 2010.
doi:10.1371/journal.pone.0046882.g001

Climatic Anomalies and WNV Incidence in the NGP

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e46882



Thus, a longer mosquito season increases the time available for

virus transmission and amplification in avian communities prior to

the onset of human transmission during the summer.

Actual evapotranspiration is an important hydrological process

that encompasses water movement from the land surface to

atmosphere through the combined processes of evaporation from

the soil surface and transpiration of subsurface moisture by plants.

Table 1. Comparisons of WNV incidence rate between the NGP and the U.S. throughout 2004 to 2010.

Year NGP U.S. Percentage of Cases (NGP/U.S.)

Human Cases Incidence* Human Cases Incidence

2004 197 1.60 2539 0.91 7.76%

2005 622 5.04 3000 1.07 20.73%

2006 715 5.79 4269 1.53 16.75%

2007 1254 10.15 3630 1.30 34.55%

2008 152 1.23 1356 0.48 11.21%

2009 100 0.81 720 0.26 13.89%

2010 91 0.74 1021 0.37 8.91%

Total 3131 25.35 16535 5.91 18.94%

*per 100,000.
doi:10.1371/journal.pone.0046882.t001

Figure 2. The plotting of GAM best-fitting results (a) Model Date: Jun 25 (b) Model Date: Aug 12 between WNV risk and
environmental variables.
doi:10.1371/journal.pone.0046882.g002
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A positive ETa can indicate higher-than-average temperature or

soil moisture availability, both of which are expected to have

positive relationships with WNV risk. The improvement in model

fit as additional information on ETa was accumulated from model

dates May 24 through July 11 suggests that the sensitivity of WNV

risk to surface moisture and mosquito breeding habitats is

strongest during this part of the season. In contrast, improvements

in fit for model dates of July 19 and later were driven by

cumulative LST, suggesting that temperature is an important

climatic risk factor during the summer as WNV transmission shifts

from birds to humans.

Multi-temporal models incorporating these three remotely-

sensed environmental variables fit the data well and produced

reasonable forecasting results. Models with dates of June 1 and

later explained between 40–62% of the spatial and temporal

variability in relative risk. Model fit increased later in season as the

time between the model prediction and the main WNV

transmission season grew shorter, reflecting the expected trade-

off between lead time and accuracy of ecological forecasts. The

remaining unexplained variability likely reflects numerous other

drivers of WNV risk that were not included in our model, such as

WNV seroprevalence in avian community, changes in avian

community composition over time, vector control, and human

Table 2. GAM Model selection results for each model date.

No. Model Date*

The composite date of environmental variables in the best-
fitting models AIC Adjusted R2

LST ETa NDVI

1 April 22 April 22 April 22 April 22 549.7 17.7

2 April 30 April 30 April 30 April 22 522.2 29.6

3 May 8 May 8 April 30 May 8 488.2 37.8

4 May 16 May 16 April 30 April 22 453.1 44.6

5 May 24 May 16 May 24 April 22 438.3 39.7

6 June 1 May 16 June 1 April 22 432.3 40.8

7 June 9 May 16 June 9 April 22 426.2 41.9

8 June 17 May 16 June 17 April 22 410.1 44.2

9 June 25 May 16 June 25 April 22 391.7 46

10 July 3 May 16 July 3 April 22 375.1 48

11 July 11 May 16 July 11 April 22 348.1 51.6

12 July 19 July 19 July 11 May 8 323.6 58.7

13 July 27 July 27 July 11 May 8 303.3 60.5

14 August 4 August 4 July 11 May 8 280.4 62.5

15 August 12 August 4 July 11 May 8 280.4 62.5

*Each model was fitted using environmental variables between the earliest composite date (April 22) and the model date.
doi:10.1371/journal.pone.0046882.t002

Figure 3. Cross-validation of generalized additive models for four model dates from 2004–2010. The RMSE results for 2011 are a
validation based on the model fitted with data from 2004–2010.
doi:10.1371/journal.pone.0046882.g003

Climatic Anomalies and WNV Incidence in the NGP
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Figure 4. WNV relative risk forecasting maps for 2011 at the (a) model date June 25 and (b) model date July 27 and (c) 2011 SEB
smoothed WNV incidence rates. The circle indicates the Omaha-Council Bluffs metropolitan area.
doi:10.1371/journal.pone.0046882.g004
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behavior. The passive disease surveillance data that we used also

has numerous sources of uncertainty, which further reduced our

ability to model WNV risk as a function of environmental

variables Even so, the model still produced a reasonable prediction

of the regional patterns of WNV risk in 2011.

The lagged effects of warmer temperature and higher precip-

itation on increasing human WNV incidence have been demon-

strated in a previous study [41]. This study summarized

meteorological conditions using weather station data. However,

the availability and distribution of stations may not represent

spatial and temporal climatic variations well, especially in the rural

areas. Our study took advantage of satellite remote sensing data

sources to develop multiple prediction models based on the

environmental conditions. Earth-observing satellites provide time-

ly and consistent repeated measurements across most of the earth’s

land surface, which are valuable for monitoring and forecasting

disease risk at broad regional scales [42,43]. We also demonstrated

how the sensitivity of WNV incidence to different environmental

variables changes throughout spring to summer.

The national WNV outbreak appears to have declined from

2007 through 2011 according to surveillance reports [4].

However, localized outbreaks still can be observed in specific

locations. For instance, in 2010 there was a major WNV outbreak

in Arizona [44,45] and a resurgence of cases in parts of the New

York City metropolitan area [3]. Recently, many WNV outbreaks

have also been reported in many countries in Europe, including

Romania, Italy, Greece, and Spain. [46–49]. The possibility of

continued evolution of WNV is also a concern. In the U.S., the

original WNV strain (NY99) was replaced by a more virulent

strain (WN02) with a shorter extrinsic incubation time in the

mosquito vector [50,51]. Furthermore, a national serological

survey of blood donors between 2003 and 2008 also showed the

low cumulative prevalence (1%) of past WNV infection in the U.S.

[52]. Thus, a large proportion of the population is still susceptible

to the risk of WNV infection. This evidence highlights the

potential for future outbreaks, which will likely occur at times and

in places where climatic conditions are most suitable for disease

reemergence.

The continuing risk of WNV outbreaks poses a number of

challenges for WNV surveillance. For example, passive surveil-

lance based on voluntary reporting of dead birds will likely become

less effective if concerns about WNV risk fade from public

attention [53]. Surveillance of mosquito populations or sentinel

animals can be effective, but is likely to be highly concentrated in

specific areas where sufficient resources are available. Surveillance

of environmental risk factors based on environmental monitoring

data offers a complementary approach that can highlight the

places and times that are most at risk for future outbreaks. A goal

for future research should be to blend information from these

various types of surveillance data to improve forecasting via data

assimilation and other advanced data-model fusion techniques

[54].
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